Intelligence artificielle

Impacts environnementaux et sanitaires

21 octobre 2025 – 60 minutes

etudes@greenit.fr

Qui sommes nous?

2

green 🚻

Ecosystème Green IT

4 organisations en une

Association 1901 d'intérêt général

Information
<u>Etudes</u>
Plaidoyer

Collectif d'experts

Conseil - Expertise
<u>Formation</u>
Benchmark Green IT

Club d'organisations

Echanges Compétence

CNumR

Outils Référentiels

Ecosystème Green IT

Quelques livrables

Teaser!

Teaser

- Durée de vie d'un GPU 3 à 5x plus courte qu'un serveur traditionnel, consommation électrique jusqu'à 4x supérieure.
- 80% des DC sont obsolètes face aux besoins de l'IA
- 70 % des impacts de l'IA ne sont pas des émissions de GES
- Rejets de particules fines : 5 décès par jour en 2025 et 34 en 2030
- 7x plus d'impacts entre 2025 et 2030
- GES: 62% du budget annuel soutenable de l'Europe en 2030

Agenda

7

Agenda

- 1. Etude
- 2. Méthodologie
- 3. Périmètre & inventaire physique
- 4. Impacts 2025-2030
- 5. Conséquences
- 6. Recommandations

Q&A

1. Etude

Mais pourquoi?!

Nos études

Equipe

Auteurs

- Auban Derreumaux, innov'ICTion
- Frédéric Bordage, GreenIT.fr
- Laure Alfonsi, Zeb & Web

Contributeurs

- Frédérik Varlet, consultant NR
- Estée Desanctis, indépendante EcoDesign
- Jérôme Gascoin, spécialiste FinOps et GreenOps
- Xavier Prizé, consultant NR

Editeur

Association Green IT

Nombreuses études sur le sujet

Product Carbon Footprint (PCF) for NVIDIA HGX H100 - Nvidia

Uniquement le GPU et monocritère

More than Carbon: Cradle-to-Grave environmental impacts of GenAl training on the Nvidia A100 GPU - Sophia Falk et al.

ACV multicritère d'un GPU A100

Intelligence artificielle, données, calculs : quelles infrastructures dans un monde décarboné ? - The Shift Project

Etude monocritère Gaz à Effet de Serre (GES) des serveurs IA à l'échelle mondiale

Pourquoi cette étude ?

Trop de chiffres fantaisistes

De 1,3 à plus de 300 g eqCO2 d'intensité, des kWh qui ne disent rien des impacts...

Une étude monocritère GES (Shift Project)

Mais GES = 31 % max des impacts. Quid des 69 % restants ?

- Au final, impossible de réfléchir au sujet
 - Sans une approche holistique des impacts
 - Reposant sur une approche méthodologique standard
- D'où la nécessité d'une première ACV sur le sujet
 - Multicritères
 - Basée sur des normes et standards reconnus (ISO, PEF, etc.)
 - Intégrant l'ensemble des composantes de l'infrastructure

Esprit de cette étude

- Valider les chiffres existants
 - ACV multicritère GPU A100
 - Etude The Shift Project
- · Compléter ces études si
 - Passer du GPU à l'impact global / monde
 - Compléter GES avec les 15 autres impacts standards du PEF

2. Méthodologie

ACV, PEF, RCP, et autres acronymes

ACV, PEF, PCR

• Trois méthodologies reconnues

- Analyse du Cycle de Vie (ACV) du l'ISO
 - ACV multicritères simplifiée type screening
 - Méthode définie par les standards internationaux ISO 14040 et ISO 14044
- Norme Product Environmental Footprint (PEF) de la Commission Européenne
 - Vise à harmoniser la quantification et l'affichage des impacts environnementaux de produits et services mis à disposition partout en Europe. S'appuie sur ISO 14040
- Référentiel de Catégorie de produit (RCP) Services Numériques de l'ADEME
 - Norme française qui complète le PEF européen

Bases de données de facteurs d'impacts

- NegaOctet et EcoInvent conformes ISO et PEF
- 16 indicateurs d'impacts

ACV, PEF, PCR

Trois méthodologies reconnues

- Analyse du Cycle de Vie (ACV) simplifiée screening de l'ISO
- Référentiel Product Environmental Footprint (PEF) de la Commission Européenne
- Référentiel de Catégorie de produit (RCP) Services Numériques de l'ADEME

• Bases de données de facteurs d'impacts

- NegaOctet et EcoInvent, conformes ISO et PEF
- 16 indicateurs d'impacts

ACV, PEF, PCR

- Méthode de quantification : ACV simplifiée type screening
- Trois méthodologies standards
 - Analyse du Cycle de Vie (ACV) de l'ISO
 - Product Environmental Footprint (PEF) de la Commission Européenne
 - Référentiel de Catégorie de produit (RCP) Services Numériques de l'ADEME
- Bases de données de facteurs d'impacts
 - NegaOctet et EcoInvent conformes ISO et PEF
 - 16 indicateurs d'impacts
 - 4 étapes du cycle de vie : fabrication, distribution, utilisation, fin de vie

Les 16 indicateurs

Indicateur	Description	Unité	
ADPe	Epuisement des ressources abiotiques matière (métaux et minéraux)	kg SB eq.	
ADPf	Epuisement des ressources abiotiques fossiles	MJ EP	
AP	Potentiel d'Acidification	molc H+ eq	
CTUe	Toxicité pour la biodiversité (éco-toxicité)	CTUe	
CTUh	Toxicité pour les êtres humains, cancers	CTUh	
CTUH-nc	Toxicité pour les êtres humains, autre que cancers	CTUh	
EpF	Eutrophisation des milieux aquatiques (eau douce)	kg P eq	
Epm	Eutrophisation des milieux aquatiques (mers et océans)	kg N eq	
Ept	Eutrophisation terrestre	molc N eq	
GWP	Potentiel de réchauffement global	kg CO2 eq.	
IR	Rayonnements ionisants	kBq U235 eq	
LU	Artificialisation des sols	LU	
ODP	Potentiel de réduction de la couche d'ozone	kg CFC-11 eq	
PM	Particules fines	Disease incidence	
POF	Formation d'ozone photochimique	kg NMVOC eq	
WU	Utilisation de l'eau douce - cycle de l'eau	m3 world eq	

Périmètres

Trois unités fonctionnelles

- UF1 : Fabriquer un serveur IA
- UF2: Utiliser ce serveur IA pendant 1 an
- UF3 : **Utiliser** *n* **serveurs IA dans le monde** pendant 1 an (*a*)

Flux de référence associés

- UF1: Fabriquer un serveur IA
- UF2: Utiliser UF1 à 67 % de charges pendant 365 jours 24h sur 24
- UF3 : Utiliser *n* UF2 pendant 1 an (*a*) :
 - (a) = 2025 ; n = **1 133 500 serveurs** (pour **9 068 000** éq. GPU*)
 - (a) = 2030 ; n = **7 625 000 serveurs** (pour **61 000 000** éq. GPU*)

^{*} éq. GPU = Graphical Processing Unit équivalent = microprocesseur dédié à l'IA (GPU/TPU/NPU)

Contrôle de cohérence et validation croisée

Product Carbon Footprint (PCF) for NVIDIA HGX H100 - Nvidia, 2025, étude

- Uniquement le GPU et monocritère
- Validation de notre facteur d'impacts GPU issu de NegaOctet

More than Carbon: Cradle-to-Grave environmental impacts of GenAI training on the Nvidia A100 GPU - Sophia Falk et al., 2025, <u>étude</u>

- ACV multicritère du GPU uniquement
- Validation de nos facteurs d'impacts GPU issus de NegaOctet

Intelligence artificielle, données, calculs : quelles infrastructures dans un monde décarboné ? The Shift Project, octobre 2025, <u>étude</u>

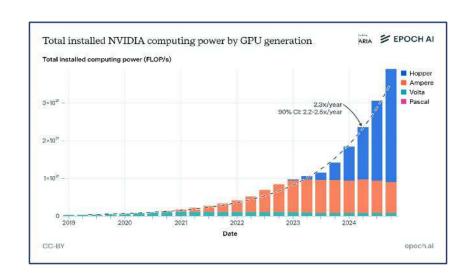
- Etude monocritère Gaz à Effet de Serre (GES) des serveurs IA à l'échelle mondiale
- Validation de notre inventaire (nombre GPU monde)

3. Inventaire

GPU, serveurs, KWh élec., m2 DC, etc.

Inventaire UF1 & 2

- Constitution
- Quantités
- Spécificités
 - Durée de vie 3 à 5x plus courte
 - Puissance 4 à 6x plus


Composants	Quantités	Puissance unitaire (Watts)	Puissance totale (Watts)
GPU Tensor Core Nvidia H100 SXM	8	700	5600
CPU Intel Xeon	2	350	700
Motherboard	1	100	100
Power supply	4	3000	12000
Power supply - backup	2	3000	
RAM DDR5 64Gb DIMM	32	10	320
SSD TLC M.2 1Tb	4	10	40
Taille du chassis (U)	7		

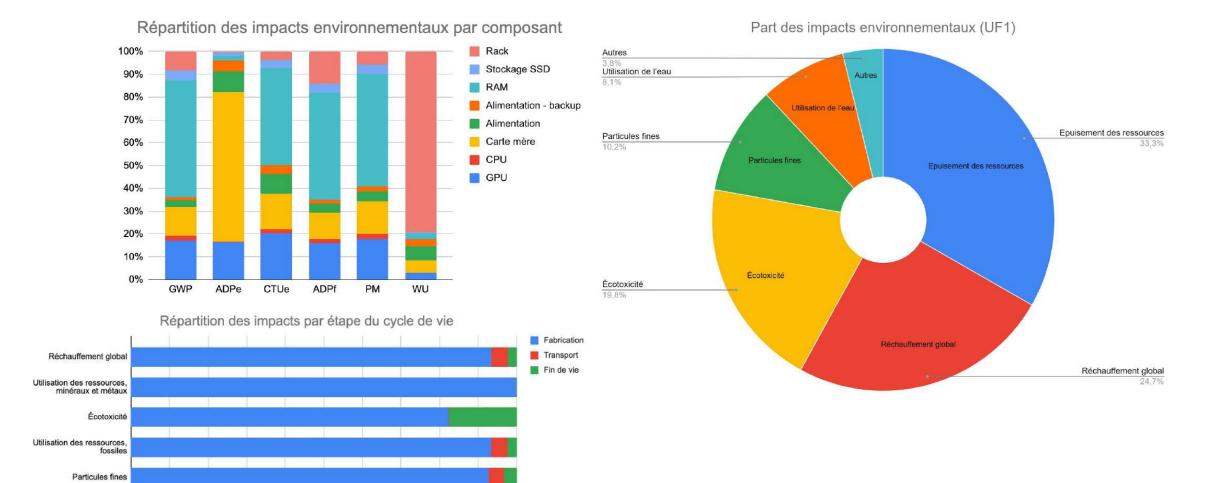
Inventaire UF3

Utiliser n serveurs

- Constitution
- Quantités
- Spécificités
 - Densité thermique bien plus importante
 - 80% des DC inadaptés
 - Infrastructure hyper spécialisée

	2025	2030
Equipements et infrastructures	Quantité	Quantité
Serveurs	1 133 500	7 625 000
éq GPU	9 068 000	61 000 000
Baie de stockage	226 700	1 525 000
Switchs 48 ports	23 615	158 854
Rack 42U	335 012	2 253 611
m2 DC non IT	2 680 098	18 028 889

4. Résultats


Attention... ça fait mal!

UF1

Fabriquer un serveur IA

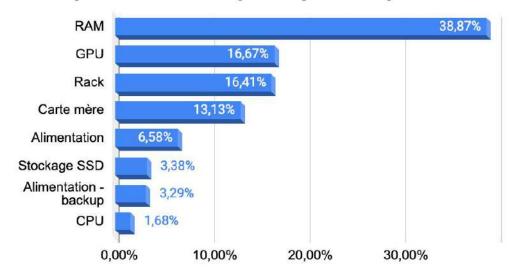
Utilisation de l'eau

50%

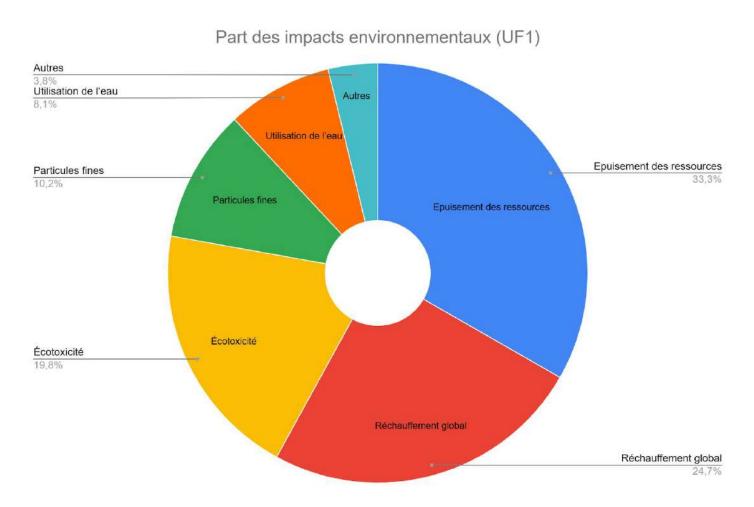
60%

70%

100%



Différence avec serveur « conventionnel »


- Présence de capacité GPU
- Très grande quantité de RAM : 1ère source d'impacts
- 2 à 3x plus de place dans le rack

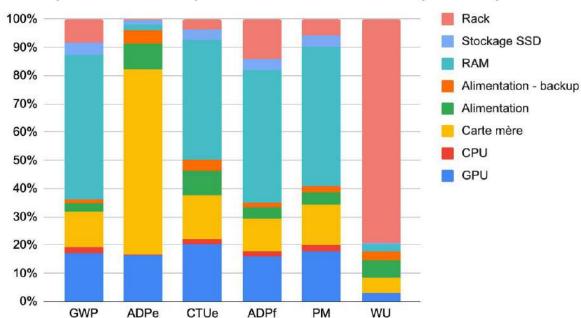
Répartition des impacts par composant

Types d'impacts

Constats clés

• 80 % des impacts avec ADPe, GWP et EcoTox

ADPe : carte mère (66%)


GWP et EcoTox : RAM (51% et 43%)

Impacts	Répartition des impacts
Epuisement de ressources (ADPe+ADPf)	33%
Réchauffement global (GWP)	25%
Eco-toxicité	20%
Particules fines (PM)	10%
Utilisation de l'eau (WU)	8%
Autres	4%

Sources des d'impacts

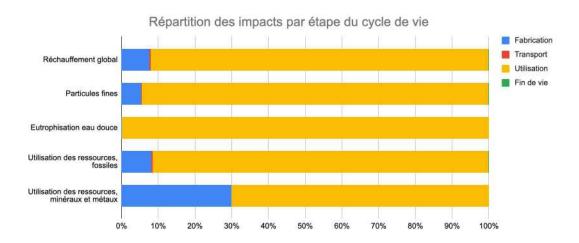
Répartition des impacts environnementaux par composant

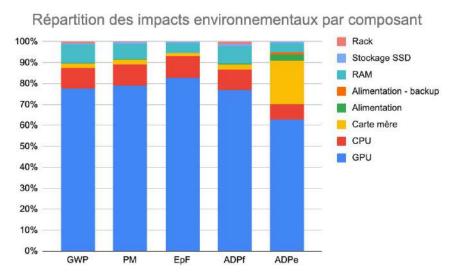
Impacts répartis entre GPU, RAM et carte mère

Contrairement aux idées reçus, la fabrication des GPUs ne concentre pas les impacts qui se répartissent entre tous les composants électroniques du serveur IA

Durée de vie très courte

En conditions réelles, les serveurs IA ont une durée de vie 3 à 5 fois inférieure aux serveurs traditionnels




UF2

Utiliser un serveur IA à 67 % de sa capacité 24 heures sur 24 pendant 1 an.

Sources des d'impacts

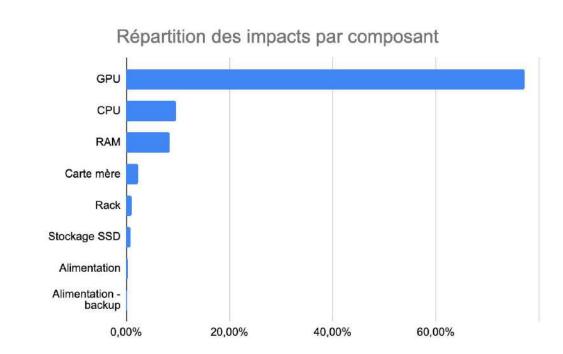
Phase d'utilisation prédominante

Durée de vie courte des serveurs

- + Grosse consommation électrique
- + Mix électrique monde

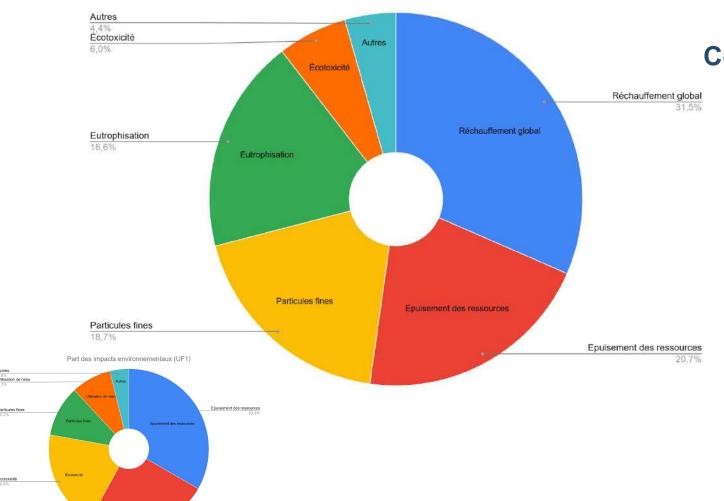
GPU écrasant

Moins d'impacts à la fabrication MAIS mobilise +80% de la conso élec.


Phase "transport" et distribution

Insignifiant au regard des autres impacts
ATTENTION au Greenwashing "eco packaging"!

En valeur absolue


La part des GPUs, du à la quantité et la part de consommation électrique (82% conso élec.)

Types d'impacts

Constat clés

- 4 indicateurs concentrent 90 % des impacts
- Inversement entre GWP et ADP
- Augmentation PM (lié au kWh élec.)
- Eutrophisation remplace EcoTox

Impacts	Répartition des impacts	Répartition UF1
Réchauffement global (GWP)	32%	25%
Epuisement de ressources (ADPe+ADPf)	21%	33%
Particules fines (PM)	19%	10%
Eutrophisation (eau douce, marine, terrestre)	19%	1%
Eco-toxicité	6%	20%
Autres	4%	11%

UF3

Utiliser n serveurs IA à 67 % de ses capacités, 24 heures sur 24, 365 jours durant l'année a.

a = 2025; n = 9 068 000 GPU dans 1 133 500 serveurs a = 2030; n = 61 000 000 GPU dans 7 625 000 serveurs

ACV

- ACV screening ISO / PEF/ RCP avec NO1.2 & EI3.1
- - UF3
- En valeur absolue
- En mPt PBCI + comparaison Jeans / bouffe
- - avec des équivalences (budget annuel soutenable individuel et europe)
- avec des équivalences autres
- structure des impacts (identique)

Indicateur	Description	2025	2030
ABPeU F	Qui Qui Geres Grande a list que matière (métaux et minéraux)	11 742 802	78 993 261
ADPf	Epuisement des ressources abiotiques fossiles	17 136 573	115 276 904
CTUe	Toxicité pour la biodiversité (éco-toxicité)	9 190 614	61 824 821
EpF	Eutrophisation des milieux aquatiques (eau douce)	22 765 031	153 139 271
GWP	Potentiel de réchauffement global	41 824 781	281 353 292
PM	Particules fines	24 933 084	167 723 660
wυ	Utilisation de l'eau douce - cycle de l'eau	1 016 510	6 838 012

		2025)	
Autres 4,0% Eco-toxicité 6,8%	A Eco-toxicité	utres	
Eutrophisation	Eutrophisation	Réchauffement global	Réchauffement globa
Particules fines	Particules fines	Epuisement de ressources	
18,5%			Epuisement de ressources 21,4%

Part des impacts environnementaux dans l'empreinte environnementale de l'IA (monde

Résultats clés UF 3

Indicateur	Description	Pondération	2025	2030	Unité	
ADPe	Epuisement des ressources abiotiques (métaux et minéraux)	9%	376	2 528	tonnes éq. antimoine (SB)	
ADPf	Epuisement des ressources abiotiques fossiles	13%	555	3 735	millions GJ EP	
EpF	Eutrophisation des milieux aquatiques (eau douce)	17%	19 123	128 637	t eq. phosphore (P)	
GWP	Potentiel de réchauffement global	31%	41	277	millions tonnes eq. CO ₂	
PM	Particules fines	18%	1 870	12 579	décès	

- 7x plus d'impacts entre 2025 et 2030
- PM: 5 décès par jour en 2025 et 34 en 2030 associés aux rejets de particules fines
- EpF : 8x l'eau consommable de la France polluée en 2030
- ADPf: 1 jour de consommation mondiale de pétrole en 2025, 6 jours en 2030
- GWP: 11% des émissions GES de la France en 2025, 100% en 2030

Equivalences en

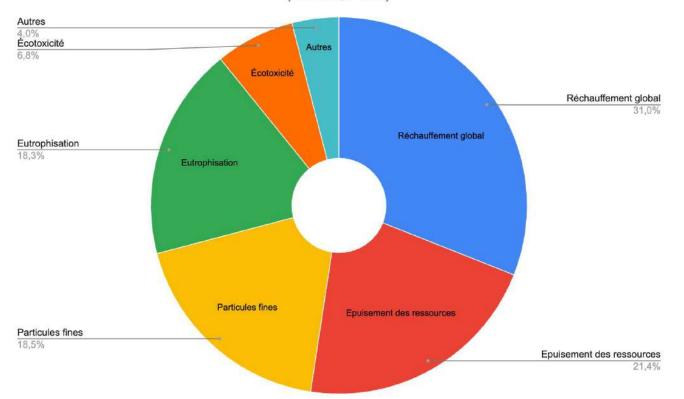
Indicateur	Description	2025	2030
ADPe	Epuisement des ressources abiotiques matière (métaux et minéraux)	11 742 802	78 993 261
ADPf	Epuisement des ressources abiotiques fossiles	17 136 573	115 276 904
CTUe	Toxicité pour la biodiversité (éco-toxicité)	9 190 614	61 824 821
EpF	Eutrophisation des milieux aquatiques (eau douce)	22 765 031	153 139 271
GWP	Potentiel de réchauffement global	41 824 781	281 353 292
PM	Particules fines	24 933 084	167 723 660
WU	Utilisation de l'eau douce - cycle de l'eau	1 016 510	6 838 012
	Population de l'Union européenne	449 000 000	449 000 000

2025 : jusqu'à 10 % du budget annuel soutenable de l'Europe

2030 : jusqu'à 62 % du budget annuel soutenable de l'Europe

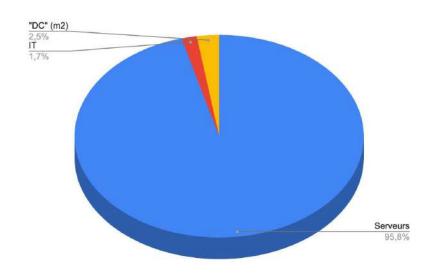
Equivalences en

budgets annuels soutenables


Indicateur	Description	2025	2030
ADPe	Epuisement des ressources abiotiques matière (métaux et minéraux)	0,2	1,2
ADPf	Epuisement des ressources abiotiques fossiles	0,3	1,7
CTUe	Toxicité pour la biodiversité (éco-toxicité)	0,1	0,9
EpF	Eutrophisation des milieux aquatiques (eau douce)	0,3	2,3
GWP	Potentiel de réchauffement global	0,6	4,1
PM	Particules fines	0,4	2,5
WU	Utilisation de l'eau douce - cycle de l'eau	0,0	0,1

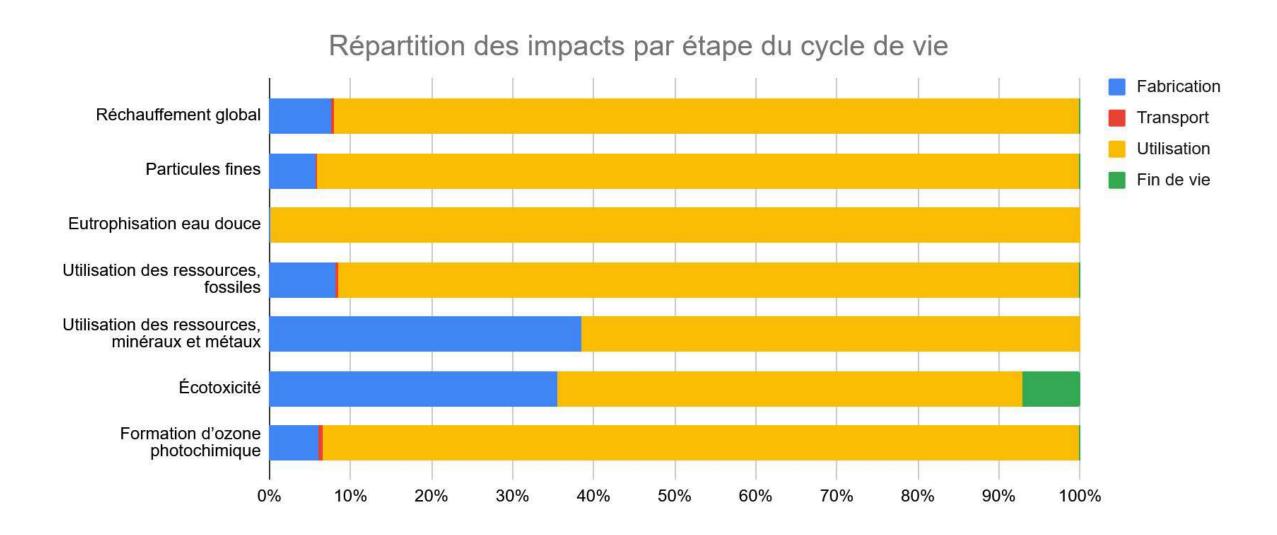
2025 : jusqu'à 60% du budget annuel soutenable de la France

2030 : jusqu'à 4,1x le budget annuel soutenable de la France


Principaux impacts

Part des impacts environnementaux dans l'empreinte environnementale de l'IA (monde, 2025)

Répartition des impacts



Impacts	Part des impacts dans l'empreinte environnementale de l'IA
Réchauffement global (GWP)	31%
Epuisement de ressources (ADPe+ADPf)	21%
Particules fines (PM)	18%
Eutrophisation (eau douce, marine, terrestre)	18%
Eco-toxicité	7%
Autres	4%

Etapes du cycle de vie

Répartition des impacts

Synthèse

Si vous n'aviez que ça à retenir.

En résumé

x7

croissance impacts entre 2025 et 2030

70 %

des impacts ne sont pas des émissions de GES 4

impacts principaux (GWP, ADPe+f, PM, Euth. EcoTox)

62%

du budget annuel soutenable européen en 2030 60-90 %

des impacts lors de la production de l'électricité

offre

Les impacts ne sont pas "tirés" par la demande mais "poussés" par l'offre.

5. Conséquences ?

1. Tensions sur l'approvisionnement en métaux et en électricité entre l'IA et les autres industries.

Augmentation et accélération des tensions (cf. notre étude « Métaux »)

2. Compromet les engagements environnementaux des pays « gros producteurs d'IA » tels que la France et l'Europe.

Contradictoire avec 2x moins d'émissions de GES en 2030 (GIEC).

6. Recommandations

Si nous étions les entreprises et l'Etat français...

Recommandations

0. Etendre les études aux unités fonctionnelles complètes (+réseaux et utilisateurs)

• notamment Shift & Green IT pour confirmer ces proportions (principaux impacts et répartition cycle de vie)

1. Créer un plan "sobriété IA" pour contenir l'offre et maîtriser la demande

- C'est l'offre qui crée les impacts : Encadrer ces acteurs et sensibiliser les utilisateurs.
- Identifier les IA "utiles" et dont l'impact net est positif.
- Mettre en place des mécanismes dissuasifs pour les IA "inutiles" ou aux impacts nets trop importants.

2. Eco-conception et IA frugale

- Améliorer le bilan environnemental des IA "utiles" en généralisant la pratique de l'écoconception.
- Rendre obligatoire la formation à l'écoconception des IA en formation initiale (école d'ingé., etc.)

3. Héberger l'IA dans les pays dont le kWh est le moins impactant

- A court/moyen terme, c'est une solution efficace pour réduire les impacts.
- Mais ce n'est qu'un "quick-win" qui ne résout pas le problème de fond.

Indicateur	Description		USA	FR
	Impacts IA monde selon la zone d'hébergement - mPt PEF	19551	15145	8480
	Réduction des impacts environnementaux et sanitaires de	0%	-23%	-57%
ADPe	Epuisement des ressources abiotiques matière (métaux et minéraux)	9%	11%	20%
ADPf	Epuisement des ressources abiotiques fossiles	13%	15%	36%
CTUe	Toxicité pour la biodiversité (éco-toxicité)	7%	7%	9%
EpF	Eutrophisation des milieux aquatiques (eau douce)	17%	26%	5%
GWP	Potentiel de réchauffement global	31%	29%	14%
PM	Particules fines	18%	8%	10%

Exemple de "quick-win":

héberger l'IA dans des pays où la production d'électricité a moins d'impacts.

Take away

Si vous n'aviez que ça à retenir.

Take away – A FAIRE

Quelques chiffres clés issus de l'étude

- Durée de vie d'un GPU 3 à 5x plus courte qu'un serveur traditionnel
- 70 % des impacts de l'IA ne sont pas des émissions de GES
- 5 décès par jour en 2025 et 34 en 2030 associés aux rejets de particules fines
- 7x plus d'impacts entre 2025 et 2030
- 4x le budget annuel soutenable de la France en 2030
- 8x la consommation d'eau de la France en 2030

En résumé

60 %

de notre budget annuel soutenable 30 ans

ans de réserves numériques devant nous

10

Facteur par lequel nous devons diviser nos impacts

2 axes

(-) d'équipements

(+) qui durent plus longtemps

3 clés

a. sobriété

b. réemploi

c. écoconception

2 visions

a. Contrainte

b. Opportunité

Se former

Formation IA Frugale, GreenIT.fr

Mieux comprendre les impacts...

- x7 d'impacts environnementaux 2025-30
- Indirectes, ex. extraction accélérée énergies fossiles
- Sociaux & éthiques, ex. santé mentale jeunes utilisateurs, travailleurs du clic, etc.

...pour ensuite les réduire.

- Questionner besoin IA
- Utiliser datacentres EU, à l'électricité plus propre
- Faire durer le hardware plus longtemps
- Favoriser modèles plus petits, spécialisés et open source
- Savoir mesurer au mieux les impacts & éviter écueils ("c'est quoi une vraie ACV IA ?")
- Instaurer best practices IA Frugale dans son organisation

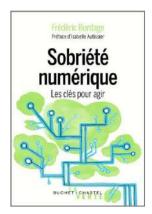
Prochaine session: 14 novembre

Inscriptions:

https://bit.ly/formationiafrugalejrm

Q&A

A vous le micro!


Contacts

l'asso : etudes @ greenit.eco le collectif : etudes @ greenit.fr

Pour aller plus loin

Sélection de livres et études

Sobriété numérique, les clés pour agir

- Buchet-Chastel
- 2019
- Lexique pour comprendre tous les enjeux de la sobriété numérique et plan d'action succinct

Tendre vers la sobriété numérique

- Actes Sud
- Je passe à l'acte
- octobre 2021
- Mode d'emploi pour déployer la sobriété numérique à l'échelle individuelle

Ecoconception web: les 115 bonnes pratiques

- Eyrolles, 5^{ème} édition
- juin 2025
- Manuel pratique pour les équipes travaillant sur des services numériques reposant sur l'internet.

Benchmark Green IT 2025

- GreenIT.fr, 10ème édition
- Septembre 2025
- Déployer la sobriété numérique à l' échelle d'une organisation